logo_medicina
Síguenos

Nobel de Medicina para Victor Ambros y Gary Ruvkunpor por su descubrimiento del microARN

Esta nueva clase de moléculas de ARN diminutas desempeñan un papel crucial en la regulación genética

Compartir
Nobel de Medicina para Victor Ambros y Gary Ruvkunpor por su descubrimiento del microARN
El Nobel de medicina premia a Victor Ambros y Gary Ruvkun, por su descubrimiento del microARN - NOBEL

Por Medicina Responsable

7 de octubre de 2024

Los investigadores estadounidenses Victor Ambros y Gary Ruvkun han sido distinguidos con el Premio Nobel de Medicina 2024 por sus descubrimientos sobre microARN, una nueva clase de moléculas de ARN diminutas que desempeñan un papel crucial en la regulación genética, según ha anunciado este lunes el Instituto Karolinska en Estocolmo, Suecia. "Su descubrimiento revolucionario en el pequeño gusano C. elegans reveló un principio completamente nuevo de regulación genética, que resultó ser esencial para los organismos multicelulares, incluidos los humanos. Los microARN están demostrando ser fundamentalmente importantes para el desarrollo y el funcionamiento de los organismos", han señalado desde la Real Academia Sueca de las Ciencias, que este lunes ha hecho público el primero de los ganadores de los Nobel de este año. 

Este avance, que ha resultado ser uno de los pilares centrales de la biología y la medicina modernas, ha revolucionado la comprensión de cómo se controla la expresión genética, abriendo nuevas perspectivas en el estudio de enfermedades y en el desarrollo de tratamientos innovadores. 

Según Sebastián Chávez de Diego, catedrático de la Universidad de Sevilla y miembro del grupo de Expresión Génica en Eucariontes, en declaraciones a SMC España, "la concesión del Nobel de Medicina 2024 a Victor Ambros y Gary Ruvkun es un gran acierto de la Academia sueca. Las contribuciones de Ambros y Ruvkun supusieron un cambio de paradigma en nuestra visión de cómo se controla la información contenida en el genoma, añadiendo una nueva dimensión. A partir de ese momento se reveló que los genes no solo se regulaban encendiéndose o apagándose en los cromosomas, sino que su expresión se controlaba también modificando la estabilidad y efectos de sus productos inmediatos (los ARN mensajeros).  Su identificación de pequeñas moléculas de ARN como reguladores postranscripcionales revolucionó nuestro conocimiento del desarrollo corporal de los organismos pluricelulares complejos, como el ser humano, y supuso un elemento imprescindible para entender el comportamiento celular en situaciones patológicas como el cáncer”. 

Las investigaciones

Victor Ambros, nacido en 1953 en Hanover, y Gary Ruvkun, en Berkeley en 1952, se interesaron por el modo en el que se desarrollan los distintos tipos de células, descubriendo el microARN, una nueva clase de moléculas de ARN diminutas que desempeñan un papel crucial en la regulación genética.

Su descubrimiento revolucionario reveló un principio completamente nuevo de regulación genética que resultó ser esencial para los organismos multicelulares, incluidos los humanos. Ahora se sabe que el genoma humano codifica más de mil microARN. Su sorprendente descubrimiento reveló una dimensión completamente nueva de la regulación genética. Los microARN están demostrando ser fundamentalmente importantes para el desarrollo y el funcionamiento de los organismos.

A finales de los años 1980, Ambros y Ruvkun fueron becarios postdoctorales en el laboratorio de Robert Horvitz, que recibió el Premio Nobel en 2002, junto con Sydney Brenner y John Sulston. En el laboratorio de Horvitz, estudiaron un gusano redondo relativamente modesto de 1 mm de largo, rl C. elegans. A pesar de su pequeño tamaño, C. elegans posee muchos tipos de células especializadas, como células nerviosas y musculares que también se encuentran en animales más grandes y complejos, lo que lo convierte en un modelo útil para investigar cómo se desarrollan y maduran los tejidos en organismos multicelulares.

Ambros y Ruvkun estaban interesados en los genes que controlan el momento de activación de diferentes programas genéticos, asegurando que varios tipos de células se desarrollen en el momento adecuado. Estudiaron dos cepas mutantes de gusanos, lin-4 y lin-14, que mostraban defectos en el momento de activación de los programas genéticos durante el desarrollo. Los galardonados querían identificar los genes mutados y comprender su función. Ambros había demostrado previamente que el gen lin-4 parecía ser un regulador negativo del gen lin-14. Sin embargo, se desconocía cómo se bloqueaba la actividad del gen lin-14. Ambros y Ruvkun estaban intrigados por estos mutantes y su posible relación y se propusieron resolver estos misterios.

Después de su investigación postdoctoral, Victor Ambros analizó el mutante lin-4 en su laboratorio recién creado en la Universidad de Harvard. Un mapeo metódico permitió la clonación del gen y condujo a un hallazgo inesperado. El gen lin-4 produjo una molécula de ARN inusualmente corta que carecía de un código para la producción de proteínas. Estos resultados sorprendentes sugirieron que este pequeño ARN de lin-4 era responsable de inhibir a lin-14.

Al mismo tiempo, Gary Ruvkun investigó la regulación del gen lin-14 en su laboratorio recién creado en el Hospital General de Massachusetts y la Facultad de Medicina de Harvard. A diferencia de cómo se sabía entonces que funcionaba la regulación genética, Ruvkun demostró que no es la producción de ARNm a partir de lin-14 lo que se inhibe por lin-4. La regulación parecía ocurrir en una etapa posterior del proceso de expresión génica, a través del cese de la producción de proteínas.

Los experimentos también revelaron un segmento en el ARNm de lin-14 que era necesario para su inhibición por lin-4. Los dos galardonados compararon sus hallazgos, lo que dio como resultado un descubrimiento revolucionario. La secuencia corta de lin-4 coincidía con secuencias complementarias en el segmento crítico del ARNm de lin-14. Ambros y Ruvkun realizaron más experimentos que demostraron que el microARN de lin-4 desactiva lin-14 al unirse a las secuencias complementarias en su ARNm, bloqueando la producción de la proteína lin-14.

Este descubrimiento era un nuevo principio de regulación genética, mediado por un tipo de ARN previamente desconocido, que era el microARN. Los resultados fueron publicados en 1993 en dos artículos en la revista Cell. Aunque los resultados eran interesantes, el inusual mecanismo de regulación genética se consideró una peculiaridad de C. elegans, probablemente irrelevante para los humanos y otros animales más complejos.

Esa percepción cambió en el año 2000 cuando el grupo de investigación de Ruvkun publicó su descubrimiento de otro microARN, codificado por el gen let-7. A diferencia de lin-4, el gen let-7 estaba altamente conservado y presente en todo el reino animal. El artículo despertó un gran interés y, en los años siguientes, se identificaron cientos de microARN diferentes.

Hoy, sabemos que hay más de mil genes para diferentes microARN en humanos, y que la regulación genética por microARN es universal entre los organismos multicelulares. Además de la cartografía de nuevos microARN, los experimentos de varios grupos de investigación han esclarecido los mecanismos de producción y transporte de los microARN a secuencias diana complementarias en los ARNm regulados.

 



Te puede interesar
ana-pastor-jura-cargo-presidenta-ama
Ana Pastor jura su cargo como presidenta de A.M.A.
rehabilitacion-exoesqueleto-ictus
Rehabilitación con exoesqueletos, una nueva oportunidad frente al ictus y a las lesiones medulares
22-personas-afectadas-salmonelosis-comer-tortilla-patatas-bar-barcelona
Ascienden a 29 los afectados por salmonelosis tras comer tortilla de patatas en Barcelona